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Abstract—Integrating device-to-device (D2D) cooperation with
mobile edge computing (MEC) for computation offloading has
proven to be an effective method for extending the system capa-
bilities of low-end devices to run complex applications. This can
be realized through efficient computing data offloading and yet
enhanced while simultaneously using multiple wireless interfaces
for D2D, MEC and cloud offloading. In this work, we propose
user-centric real-time computation task offloading and resource
allocation strategies aiming at minimizing energy consumption
and monetary cost while maximizing the number of completed
tasks. We develop dynamic partial offloading solutions using the
Lyapunov drift-plus-penalty optimization approach. Moreover,
we propose a task admission solution based on support vector
machines (SVM) to assess the potential of a task to be com-
pleted within its deadline, and accordingly, decide whether to
drop from or add it to the user’s queue for processing. Results
demonstrate high performance gains of the proposed solution
that employs SVM-based task admission and Lyapunov-based
computation offloading strategies. Significant increase in num-
ber of completed tasks, energy savings, and cost reductions are
resulted as compared to alternative baseline approaches.

Index Terms—Lyapunov optimization, mobile edge computing,
partial offloading, computation resource allocation, admission
control, D2D communication, multi-RAT.

I. INTRODUCTION

W ITH the rapid development of the Internet-of-Things
(IoT), new innovative services are unfolding, many

of which are extremely sensitive to delay and yet require
tremendous computation capabilities [1], [2]. Mobile edge
computing is one of the key designs of the future networks
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aiming at assisting devices with little computing capabilities
to perform computation-intensive tasks at mobile edge devices
or servers. In conventional MEC networks, tasks are com-
pletely offloaded to the server or cloud by adopting binary
offloading as in [3]–[5]. Further enhancements are realized
through integrating D2D cooperation with Het-MEC for D2D
offloading to provide additional computation capabilities with
low monetary cost and energy consumption. Partial offloading
was adopted in [6]–[9], where a task can be partitioned into
multiple subtasks to be executed at different nodes simultane-
ously. However, the number of subtasks allowed was limited;
e.g.,: two subtasks to be executed locally or remotely as in [7],
and three subtasks as in [8] and [9]. Unlike conventional
networks, we aim at providing a comprehensive heterogeneous
MEC framework while taking advantage of all the possible
computation and communication resources and allow efficient
utilization of all the available computation and radio resources.

Previous studies focused mainly on achieving one or two
objectives such as maximizing computation capacity as in [8],
fog profit as in [10] and a trade-off between energy and
latency as in [7]. Some works adopted Lyapunov optimization
to reduce queue congestion by stabilizing the queue backlog.
They mainly aimed at maximizing throughput as in [11], min-
imizing energy as in [12] and minimizing cost as in [13].
However, these objectives are interdependent which creates
the need for efficient solutions providing a trade-off between
multiple objectives. Hence, we aim at maximizing the number
of completed tasks by stabilizing the requester queue back-
log while minimizing energy consumption and monetary cost
subject to delay, computation and radio resources constraints.

Moreover, admission control schemes were proposed to
verify the availability of computation resources before a gen-
erated task can be admitted [10], [14], [15]. Mainly, these
approaches tend to be more network-centric, implemented at
the fog node as in [10] and [11], and use binary offloading
as in [14], or limited partial offloading as in [15]. To our
knowledge, considering queue congestion and admission con-
trol schemes simultaneously with partial offloading to multiple
cooperating nodes in D2D-enabled Het-MEC networks is still
not yet well investigated. Hence, we leverage the use of
Support Vector Machines to propose a task admission con-
trol scheme to decide on whether to admit or reject newly
generated tasks.
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In summary, existing research works are still limited in
terms of scalability and performance. Previous studies focus
mainly on achieving one or two objectives. Moreover, these
studies mainly used binary offloading while some used partial
offloading with limited number of nodes without consid-
ering task admission control. Complementing the existing
literature, we present a comprehensive user-centric, real-time,
partial computation offloading and resource allocation in D2D-
enabled Het-MEC networks and develop an intelligent admis-
sion control scheme to decide on the tasks with high potential
to be executed within their deadlines. The main contributions
of this work can be summarized as follows:

1. We adopt multi-layer D2D-enabled heterogeneous MEC
networks where the requester can partially offload its bit-
wise independent computation data to multiple nodes for
parallel processing including one peer mobile terminal,
edge server and cloud.

2. We take advantage of the coexistence of multiple het-
erogeneous networks and allow the requester to offload
different parts of its computational data task using dif-
ferent wireless technologies, simultaneously, such as
Bluetooth to the peer MT, WiFi to the edge server, and
cellular network to the cloud.

3. We develop real-time multi-objective computation
offloading and resource allocation solutions based on
Lyapunov optimization to meet a tradeoff between three
objectives: (1) stabilizing the requester queue backlog
leading to a higher number of completed tasks, (2) min-
imizing the energy consumption and (3) minimizing the
monetary cost subject to delay and resources constraints.
Accordingly, we decide on the best offloading strategy,
the amount of computation data to be offloaded, and
the computation resource allocation providing the best
tradeoff between the considered objectives.

4. We propose an SVM-based admission control scheme
to decide on whether to admit or reject newly gener-
ated computation tasks by assessing their potential to
be completed within their deadline under the dynamic
variation of the system parameters. The SVM-based
admission control scheme is embedded into the proposed
Lyapunov-based computation offloading approach to
reduce the requester queue congestion, increase the per-
centage of completed tasks, and minimize the energy
consumption and monetary cost by allowing the less
congested queue to serve tasks with higher potential to
be completed.

II. RELATED WORK

In a heterogeneous MEC networks, a requester mobile
terminal can either perform its computation locally or can
offload its data to be executed remotely at the edge server
or cloud. Binary offloading was adopted in [16]–[20], where
the computation data of a task is completely offloaded to one
node. Partial offloading consisting of dividing the task into
multiple portions to be executed simultaneously at different
nodes enhances the system performance and allows the task
to be completed within its deadline. Partial offloading was

adopted in [21], [22] where computation tasks can be executed
locally, as well as, remotely at the edge server or cloud.

In addition to multi-layer edge servers, D2D communica-
tion was integrated in MEC for D2D computation offloading to
peer mobile terminals to further enhance system performance.
In D2D-enabled Het-MEC, the proposed approaches in [3]
and [4] considered binary offloading, while [6]–[9] adopted
partial offloading. The authors in [6] used partial offloading
to multiple peer devices aiming at minimizing energy con-
sumption and execution time. The authors in [7] adopted
five modes including local execution, complete and partial
D2D, MEC and mobile cloud computing (MCC) offload-
ing. The task can be divided into two parts to be executed
locally and remotely, while minimizing latency and energy
consumption. In [8] and [9], the task is divided into three
parts to be executed locally, at one peer MT and MEC,
simultaneously, aiming at maximizing the number of sup-
ported devices while meeting delay and power constraints.
Many studies in the literature used the Lyapunov method
for real-time computation offloading decisions providing near-
optimal performance with low computational complexity. An
energy-efficient task assignment, wireless and computation
resource allocation were addressed in [23]. The authors in [24]
proposed partial offloading while decomposing the problem
into multiple Lyapunov optimization sub-problems while min-
imizing the energy consumption. The authors in [13] consider
price-aware Lyapunov-based offloading strategies to decide
at the edge server on the number of tasks to be offloaded
and resources to be purchased while minimizing the total
offloading cost.

Moreover, some work addressed admission control, which
plays a major role in reducing the network congestion and
enhancing the system performance. The authors in [10] for-
mulated the admission control policies as a sequential game.
In [14], the authors adopted binary offloading and proposed
a task admission approach aiming at minimizing the total
energy consumption while meeting the tasks latency con-
straints. In [11], the authors addressed admission control,
computation resource allocation, and power control at the fog
node while applying Lyapunov optimization for the different
sub-problem aiming at maximizing system throughput.

In summary, the existing D2D-enabled Het-MEC works
are still limited in terms of scalability, system performance
and computation capacity. They mainly used binary offload-
ing while some used partial offloading with limited number
of nodes. Moreover, previous studies are in general network-
centric and focus on one or two objective functions, while
not considering queue congestion. In this work, we propose a
user-centric real-time Lyapunov-based computation offloading
decision and computation resource allocation in D2D-enabled
Het-MEC system. The novelty of the work mainly lies in
(1) accommodating for different offloading modes including
local execution, complete and partial offloading strategies to
multiple cooperating nodes in D2D-enabled heterogeneous
MEC networks, (2) providing real-time optimized solutions
based on the Lyapunov-drift-plus-penalty optimization that
was customized to meet the desired multi-objectives of stabi-
lizing the requester queue and achieving a balance between
high number of completed tasks, low energy consumption
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Fig. 1. Heterogeneous MEC network formed by mobile terminals, edge
servers and cloud.

and monetary cost, and (3) leveraging the use of SVM to
provide admission control scheme to further enhance the
system performance.

III. SYSTEM MODEL

As presented in Figure 1, we consider a network composed
of mobile terminals, edge servers, in addition to cloud com-
puting infrastructure. A mobile terminal (MT) is considered
a requester mobile terminal (MTR) when it has computation
tasks to be executed, which are often exhausting and require
high computation capabilities with limited latency constraints.
Hence, cooperating nodes with higher computation capacity
are needed to assist in executing these computation tasks
within their deadline. In our work, we adopt partial offload-
ing and allow computation tasks to be performed locally or
offloaded simultaneously to multiple nodes. Accordingly, a
MTR can communicate with a peer MT using short range wire-
less technologies such as Bluetooth, with the edge servers and
cloud through WiFi access points and cellular base stations.

A. Main System Parameters

In our work, we target low-latency and data partitioned bit-
wise independent oriented applications such as virus scan, file
compression, face recognition and vision applications [25].
This type of applications can be abstracted as a profile with
different requirements of a task Ui as follows: (1) Di the task
computation data size, (2) Tmax

i the maximum delay toler-
ance, and (3) F the computation intensity in terms of number
of CPU cycles required for computing 1-bit of data [26].

A requester then generates multiple computation tasks with
an average task arrival rate λN reflecting the number of tasks
requested per second with an average data size λd bits per
task. We denote by T 0

i the time of arrival of task Ui , i.e.,: the
data of the task Ui is added at the MTR i queue at T 0

i to be
processed. We denote by Ti , the deadline of task Ui , which is
equal to T 0

i +Tmax
i . We denote by T d

i [t ] the dynamic delay
tolerance of the task which represents at every time slot the
remaining time for a task to be completed. Hence, T d

i [t ] is
set to be equal to Ti −Ts · t ; i.e.,: T d

i [t ] is initialized to Tmax
i

at T 0
i , and decreases by the time slot duration Ts every time

slot. Accordingly, the computation data of task Ui should be
fully executed before time slot Ti and the dynamic deadline

TABLE I
MAIN SYSTEM PARAMETERS AND DECISION VARIABLES

T d
i [t ] reaches zero, to signal the task deadline has expired.

Otherwise, the task data left to be processed will remain in the
queue to be processed. When the task deadline is reached, the
queued task Ui will be dropped and considered not completed.
In this case, the remaining data belonging to the task Ui will
also be removed from the queue. Let πi denote whether a
task Ui is completed, i.e.,: πi is set to one if the data of
task Ui is processed within its deadline, and zero otherwise.

We denote by F l , F d , F e and F c the total computation
resources (in CPU cycles/s) of a MTR, a peer MT, MEC
and the MCC, respectively. We assume that the computa-
tion resources are divided into equal-size chunks of size S c .
We denote by μ̂d [t ], μ̂e [t ] and μ̂c [t ], real variables varying
between 0 and 1, indicating the available fractions of com-
putation resources at MT, MEC, and MCC, respectively, at a
time slot t. The main system parameters are summarized in
Table I.

Our proposed method runs at the requester side and
decides on the offloading mode and the computation resources
assigned at every time slot based on system parameters such
as MTR queue backlog size, transmission throughput, energy
consumption, monetary cost, available computation resources
and tasks’ deadlines.To obtain the needed information, the
requester is assumed to exchange control information over
dedicated control channels with the remote nodes. The amount
of data being exchanged is minimal, that leads to a negligi-
ble delay. Moreover, our proposed approach does not require
any changes in the cellular/WiFi/Bluetooth standards and
can accommodate for any multi-user communication resource
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management scheme. Accordingly, at every time slot t, the
best computation offloading mode is selected, as well as the
best computation resources needed to provide the best bal-
ance between MTR queue stability, energy consumption and
monetary cost while meeting tasks’ deadlines.

B. Decision Variables

• Computation offloading and resource allocation modes
(L[t]): is the set of possible computation offloading
modes. In our work, we consider a set of modes that
tend to save the cloud and edge servers computation
resources while encouraging more cost effective modes
such as local execution and D2D offloading. L[t] includes
up to 9 offloading modes: (1) local execution, (2) com-
plete offloading to a peer MT, (3) complete offloading
to a MEC, (4) complete offloading to MCC, (5) partial
offloading (PO) between local execution and one peer
MT, (6) PO between local execution and MEC, (7) PO
between local execution and MCC, (8) PO between local
execution, one MT and MEC, and (9) PO between local
execution, one peer MT, MEC and MCC. At every time
slot, the proposed approach decides on one offloading
mode providing the best performance for computation
offloading. We note that our approach can be easily
extended to accommodate for all the possible combi-
nation offloading modes at the expense of increased
complexity.

• Computation offloading mode (�): The index � ∈
L[t ] indicates the possible offloading modes represented
by L[t]. Based on the selected offloading mode �, the
allowed data size to be offloaded to every node, during
time slot duration Ts, can be determined.

• Resource allocation (�′): For every offloading mode �,
there will be different possibilities for allocating the com-
putation resources of the cooperating nodes. Therefore,
we denote by ��′, the offloading mode � with specific
computation resource allocation �′ assigned by the MT,
MEC and cloud.

• Computation data offloading and resources: The compu-
tation offloading mode � and resource allocation strat-
egy �′ will decide on the size of data to be locally
executed X[t], or offloaded Y[t], Z[t] and W[t] to the peer
MT, MEC server and cloud, respectively. The selected
mode will also indicate the fraction of computation
resources allocated μd [t ], μe [t ] and μc [t ] by the peer
MT, MEC server and cloud, respectively, at every time
slot t.

C. General Parameters

• Time slot duration (Ts): is the time slot duration, in
seconds, representing how often the decision is taken.

• Arrival data (A[t]): represents the amount of computation
data, in bits, that arrives to the user’s queue within time
slot t.

• Processed data (D[t ]): represents the amount of com-
putation data, in bits, actually processed at time slot t,

i.e.,; D[t ] = X [t ] + Y [t ] + Z [t ] + W [t ], based on the
selected offloading mode � and resource allocation �′.

• Queue backlog (Q[t]): is located at the requester end and
represents the amount, in bits, of unfinished work as com-
putation data not being processed yet at the beginning of
time slot t and can be expressed as follows:

Q [t + 1] = Q [t ]−D[t ] + A[t ] (1)

• Cost (C��′ [t ]): represents the estimated normalized
penalty function in terms of energy consumption E��′ [t ]
and monetary cost φ��′ [t ] when using offloading mode �
with computation resource allocation �′ at time slot t.

D. Computing Models

In our work, we adopt four computing models: (1) local
computing, (2) D2D computing, (3) edge computing, and
(4) cloud computing. We consider the energy consumed for
transmission and computation execution, as well as mone-
tary cost for transmission and computation data offloading. We
assume a usage-based pricing, which charges users proportion-
ally with respect to the amount of data consumed. In general,
some interfaces have much less cost than others. In addition,
transmission over D2D connectivity such as Bluetooth may be
free of charge while charging for data computation to provide
incentives for the peer MT to share its resources.

1) Local Computing: The computation delay T l of pro-
cessing X data locally can be computed as follows: T l = X ·F

F l .
Accordingly, within a time slot duration of Ts, the maximum
possible data to be processed locally at time slot t can be
estimated as follows:

̂X [t ] =
Ts · F l

F
(2)

The energy consumed by MTR to execute locally X[t] bits
can be expressed as follows:

E l [t ] = Cl ·X [t ] ·
(

F l
)2

(3)

where Cli is the local effective switched capacitance of MTR,
reflecting the energy consumption coefficient related to its
CPU performance [7], [16].

2) D2D Device Computing: For D2D offloading, we con-
sider the transmission T dt and computation T dc delays. The
total delay T d of processing Y data by a peer MT can be
expressed as follows:

T d [t ] = T dt [t ] + T dc [t ] =
Y [t ]

Rd [t ]
+

Y [t ] · F
μd [t ] · F d

(4)

where Rd [t ] represents the transmission rate of the D2D link
at every time slot t. Hence, the transmission rate will vary on a
time slot basis to consider the communication channel quality.
However, since we consider a small time slot duration, we
assume the transmission rate won’t change within a time slot
duration [23]. The assigned computation resources μd [t ] ·F d

are less than the available resources ̂μd [t ]·F d . In our work, we
neglect the downlink transmission time since the output data
of the computation task is normally much smaller than that
of the input data [7]–[9]. Accordingly, the maximum possible
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data to be processed at the peer MT, at time slot t, with μd [t ],
within Ts, can be estimated as follows:

̂Y [t ] =
Ts

1
Rd [t ]

+ F
μd [t ]·Fd

(5)

The total energy Ed includes transmission Edt , reception
Edr and computation processing Edc energy consumption,
and can be expressed as follows:

Ed [t ] = Edt + Edr + Edc

= Pdt · Y [t ]

Rd [t ]
+ Pdr · Y [t ]

Rd [t ]
+ Cd

× Y [t ] ·
(

μd [t ] · F d
)2

(6)

where Pdt and Pdr are the transmit and receive power of a
MT using D2D connectivity, respectively. Cd is the effective
switched capacitance of the peer MT [7], [16].

As an incentive for MTs to cooperate, MTR is charged
by φdc USD per Hz per time slot for computation processing
at the peer MT. We denote by φdt the amount of USD charged
per bit per time slot for transmission over Bluetooth, which
may be typically free of charge. However, we included it for
completeness to account for other short range connections that
might be charged. Therefore, the total monetary cost φd [t ] of
offloading Y[t] (bits) to the peer MT is composed of com-
munication charges expressed as Y [t ] · φdt and computation
charges expressed as μd [t ] ·F d ·φdc for sharing μd [t ] of their
computation capabilities F d .

φd [t ] = Y [t ] · φdt + μd [t ] · F d · φdc . (7)

3) Edge Computing: Similar to (5), the maximum possible
data to be processed at the MEC, at time slot t, within a time
slot duration of Ts, can be estimated as follows:

̂Z [t ] =
Ts

1
Re [t ]

+ F
μe [t ]·F e

(8)

where Re [t ] represents the WiFi transmission rate, and the
assigned computation resources μe [t ] · F e is less than the
available resources ̂μe [t ] ·F e . In our work, we focus on min-
imizing the energy consumption of the MTs, hence, the total
energy E e at time slot t can be expressed as follows:

E e [t ] = Pet · Z [t ]

Re [t ]
(9)

where Pet is the power consumed by requester MTR to trans-
mit Z[t] data bits to MEC over WiFi link. The total monetary
cost for offloading Z[t] to the MEC includes communication
and computation charges, and can be expressed as follows:

φe [t ] = Z [t ] · φet + μe [t ] · F e · φec (10)

where φet represents the amount of USD charged per bit for
transmission over WiFi, and φec , the amount of USD charged
per Hz per time slot for computation processing at MEC.

4) Cloud Computing: Similar to edge computing, the max-
imum possible data to be processed at the MCC, at time slot t
within Ts, can be estimated as follows:

̂W [t ] =
Ts

1
Rc [t ]

+ F
μc [t ]·F c

(11)

where Rc [t ] represents the transmission rate of the cellular link
between the MTR and the MCC, and the assigned computation
resources μc [t ] ·F c is less than the available resources ̂μc [t ] ·
F c . The total energy E c can be expressed as follows:

E c [t ] = Pct · W [t ]

Rc [t ]
(12)

where Pct is the power consumed by requester MTR to
transmit computation data to MCC over cellular link. The
total monetary cost for MCC offloading of W[t] bits can be
expressed as follows:

φc [t ] = W [t ] · φct + μc [t ] · F c · φcc (13)

where φct represents the amount of USD charged per bit for
transmission over cellular link, and φcc , the amount of USD
charged per Hz per time slot for processing at MCC.

IV. LYAPUNOV-BASED COMPUTATION OFFLOADING

In our work, we aim at selecting the best strategy that
maximizes over time the total number of completed tasks
Π while minimizing the total cost in terms of energy con-
sumption Ψ and monetary cost Φ subject to system con-
straints. Accordingly, the objective function can be expressed
as follows:

maximizeL,�,�′,X,Y,Z
W,μd ,μe ,μc

∞
∑

t

Π[t ]− V1 ·Ψ[t ]− V2 · Φ[t ] (14)

where Ψ[t ] is the total energy consumed when using strategy
��′ and is composed of the energy consumed locally E l [t ],
for D2D offloading Ed [t ], edge offloading E e [t ], and cloud
offloading E c [t ]. Similarly, the total monetary cost is com-
posed of φd [t ], φe [t ] and φc [t ]. The weights V1 and V2

determine the impact of minimizing the energy and mone-
tary cost, respectively. The problem can be shown to be a
mixed-integer non-linear program (MINLP) and is NP-hard.
To provide real-time optimized solutions, we suggest solv-
ing our optimization problem by selecting the most efficient
strategy at every time slot t that will greedily provide the bal-
ance between the different objectives and achieve optimized
solutions at the long run. For this reason, we take advantage
of the Lyapunov Drift-Plus-Penalty optimization to provide
optimized real time solutions aiming at minimizing the queue
length at every time slot which leads to maximizing the total
number of completed tasks while minimizing the penalty func-
tion expressed in terms of energy consumption and monetary
cost.

We assume that tasks with specific arrival rate and different
data sizes are queued to be processed within their deadline.
The queue length may grow indefinitely when the process-
ing rate is less than the arrival rate, hence, computation data
may stay in a congested queue longer, and tasks may not be
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Fig. 2. The proposed SVM-based task admission with Lyapunov-based
computation offloading and resource allocation.

completed within their deadline. Therefore, our goal is to sta-
bilize the user queue backlog to keep it from building up and
causing tasks to be dropped, and hence, completing the maxi-
mum number of tasks within their deadlines. Therefore, we use
Lyapunov drift-plus-penalty optimization, which enables real-
time decisions and provides near-optimal performance for the
chosen objectives with low computational complexity [27].

As presented in Figure 2, we first present a user-centric
Lyapunov-based computation offloading (LCO) approach
operating under real-time network conditions. To achieve
our main objectives, we customize the Lyapunov penalty
function to provide a balance between stabilizing requester
queue and minimizing energy consumption and monetary cost.
Lyapunov-based utility functions are then computed for the set
of possible offloading modes L[t] including local, complete or
partial D2D, MEC and MCC offloading. The mode � providing
the maximum utility function will be selected with determined
resource allocation �′ at every time slot t.

A. Lyapunov Drift-Plus-Penalty

In general, the Lyapunov optimization aims at minimiz-
ing the change in the MTR queue backlog size Q[t] at every
time slot t resulting in a scheduling algorithm that stabilizes
the queue over time and enhances the system performance in
terms of number of completed tasks [27]. The Lyapunov func-
tion measures the MTR queue congestion using a quadratic
function ζ(Q [t ]) expressed as follows:

ζ(Q [t ]) =
1

2
(Q [t ])2 (15)

The Lyapunov drift function Δ(Q [t ]) measures the expected
difference in the Lyapunov function between two consecutive
time slots given the queue state at time slot t, as follows:

Δ(Q [t ]) = E{ζ(Q [t + 1])− ζ(Q [t ])|Q [t ]} (16)

Minimizing the Lyapunov drift function at every time slot t
consistently pushes the user queue towards a lower congestion
state, and thereby maintains queue stability [27]. To handle
our multi-objective problem, we use the Lyapunov drift-plus-
penalty method, where the base Lyapunov optimization is
extended to include a penalty cost function C��′ [t ], in our case,

expressed in terms of monetary cost and energy consumption.
The penalty function is weighted by a positive coefficient V
that determines the significance of the penalty function com-
pared to stabilizing the queue. The objective function of the
Lyapunov drift-plus-penalty approach will be:

argmin
��′∈L[t ]

Δ(Q [t ]) + V · E{C��’[t ]|Q [t ]} (17)

where E{C��′ [t ]|Q [t ]} is the expected offloading cost using
offloading mode � and resource allocation �′. The multi-
objective function in (17) can be upper bounded as follows:

Δ(Q [t ]) + V · E{C��′ [t ]|Q [t ]}

≤ 1

2
E

{

D��′ [t ]
2 + A[t ]2|Q [t ]

}

−Q [t ] · E{D��′ [t ]|Q [t ]}
+ Q [t ] · E{A[t ]|Q [t ]}+ V · E{C��′ [t ]|Q [t ]} (18)

Minimizing our target multi-objective function (17) can thus
be achieved by minimizing the upper bound in (18). We define
B[t] and λ as follows:

B [t ] =
1

2
E

{

D��′ [t ]
2 + A[t ]2|Q [t ]

}

(19)

λ = E{A[t ]|Q [t ]} = E{A[t ]} (20)

where B[t], assumed to be bounded by a fixed value B, is the
sum of the variances of the service and arrival rate, which
are non controllable parameters. λ represents the expected
data arrival A[t] defined by the application. Thus, minimiz-
ing (17) can be achieved by minimizing the controllable part
of the upper bound in (18) which is equivalent to maximiz-
ing E{Q [t ] · D��′ [t ]−V ·C��′ [t ]|Q [t ]}. Using the concept of
opportunistically maximizing an expectation, the upper bound
expression can be maximized at every time slot t, as follows:

argmax
��′∈L[t ]

Q [t ] · E{D��’[t ]|S [t ]} − V · C��’[t ] (21)

where E{D��′ [t ]|S [t ]} is the expected amount of data to be
processed using offloading mode � and resource allocation �′

considering the system state S[t] including the transmission
rates over the multiple wireless interfaces and the computation
resources availability at time slot t. Accordingly, the objective
function in (14) can be achieved by maximizing the Lyapunov-
based objective function presented in (21). The optimization
problem can then be reformulated to select the best offload-
ing mode that maximizes the Lyapunov-based utility function
which can be shown to be NP-hard. However, due to the
limited number of possible offloading modes, the optimized
solutions can be achieved by cycling over the set of all possi-
ble actions L[t] and selecting the best offloading mode � that
ensures queue stability while reducing the offloading cost at
every time slot t. The selected strategy will then determine the
size of data D[t ] to be processed locally and remotely.

B. Lyapunov-Drift-Plus-Penalty Performance Bounds

We denote by C ∗ the desired infimum time average
penalty function and assume that the expected penalty is
lower bounded by Cmin . We assume that the arrival pro-
cess is strictly within the network capacity region, hence,
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E{D��′ [t ]|S [t ]} = λ + ε, where ε > 0. Therefore, replac-
ing (19) and (20) in (18) and using the iterative expectation law
results in: E{ζ(Q [t ])+V ·C��′ [t ]|Q [t ]} ≤ B − ε ·E{Q [t ]}+
VC ∗. Summing on the time domain, the performance bounds
on time average penalty and queue can be derived as follows:

lim sup
t→∞

1

t

t
∑

τ=1

E{C��′ [τ ]} ≤ C ∗ +
B

V
(22)

lim sup
t→∞

1

t

t
∑

τ=1

E{Q [τ ]} ≤ B + V · (C ∗ − Cmin)

ε
(23)

The performance bounds on the time average penalty and
queue backlog hold for all V > 0. The theorem shows that
increasing the value of V will result in B/V decreasing lead-
ing to a time average penalty being arbitrarily near the optimal
value. However, increasing V will increase the time aver-
age queue leading to a lower number of completed tasks.
Accordingly, the Lyapunov-drift-plus-penalty approach pro-
vides [O(1/V), O(V)] performance-delay tradeoff resulting in a
time average penalty that is within O(1/V) of optimality, with
O(V) tradeoff in average queue size [27].

C. Penalty Function in Terms of Energy Consumption and
Monetary Cost

We define the cost C��′ [t ] in terms of energy consumption
and monetary cost as follows:

C��’[t ] = β
E��’[t ]

Emax [t ]
+ (1− β)

φ��’[t ]

φmax [t ]
(24)

where β is a real variable varying between 0 and 1, defining
the relative importance of minimizing the energy consump-
tion compared to minimizing the monetary cost. E��′ [t ] and
φ��′ [t ] are the energy and monetary costs consumed when
using offloading mode � with resource allocation �′. For
instance, for strategy � = 1, the local execution consumes
E��′ [t ] = E l [t ]. For � = 9, the data is divided between
local execution and remote execution at a peer MT, MEC
and MCC, the total energy and monetary cost can then be
expressed as follows: E��′ [t ] = E l [t ]+Ed [t ]+E e [t ]+E c [t ]
and φ�[t ] = φl [t ] + φd [t ] + φe [t ] + φc [t ]. In (24), Emax [t ]
and φmax [t ] represent the maximum energy consumption and
monetary cost of all the offloading modes � ∈ L[t ] with full
computation resources utilization. More details about utility
computations are presented in Section IV-D (Algorithm 2).
In our formulation, we divide E��′ [t ] and φ��′ [t ] by their
maximum values Emax [t ] and φmax [t ], respectively, to nor-
malize both entities and scale their values within the range of
0 to 1. The Lyapunov-based utility function can then reflect a
weighted sum of the three different objectives where the nor-
malized penalty cost function in terms of monetary cost and
energy consumption is weighted by V and the expected amount
of computation data to be processed reflecting the service rate
is weighted by the observed queue size Q[t].

D. Lyapunov-Based Computation Offloading Approach

The proposed LCO approach executes in real-time,
autonomously at the user end following the steps shown in

Algorithm 1 The Proposed Lyapunov-Based Computation
Offloading Approach (LCO)
Input:
- System parameters presented in Table I
- Set of possible offloading strategies: L[t]
- Cost weight: V
- Initial queue backlog size: Q[0] = 0, initial data processed: D[0] = 0
Output:
- Computation offloading strategy � ∈ L[t ]
- Task data offloading decision: X[t], Y[t], Z[t], W[t]
- Computation resource allocation: μd [t ], μe [t ], μc [t ]
- Tasks completed: πi
At every time slot t:
1: Sort tasks in the queue based on their deadlines Ti , hence, tasks with

lower deadlines will be processed first following the EDF methodology
2: Compute the utility functions for the � ∈ L[t ] offloading modes with

different resource allocation strategies �′ based on Algorithm 2
3: Select the computation offloading strategy � with resource allocation �′

providing the maximum utility function
4: If the maximum utility is negative, then defer processing any computation

task since the offloading cost is much greater than the benefit of processing
the data; i.e.,:D[t ] = 0

5: else Process the tasks sorted in the backlog queue consecutively
until ̂D��′ [t ] is fully processed or the queue is empty as follows:

• Keep the data of task Ui in the queue if the task did not reach is
deadline at time slot t

• Remove task Ui from the queue if its data is fully processed within
its deadline, and set πi to 1 to indicate Ui is completed

• Remove the task Ui and its remaining data from the queue if it
reaches its deadline and set πi to 0 to indicate Ui is dropped

• Update the data processed to be D[t ] = min{ ̂D��′ [t ],Q [t ]}
6: Update the actual data processed locally, or remotely at the MT, MEC,

and MCC X[t], Y[t], Z[t] and W[t], respectively.
7: Update queue when a new task Ui is admitted to the queue, Q [t ] =

Q [t − 1]−D[t ] +A[t ]
8: Repeat process (1)-(7) until all the tasks are considered

Algorithm 1. At every time slot t, the cycle starts by sorting
the tasks in the queue in ascending order based on their dead-
line Ti following the Earliest Deadline First (EDF) scheduling
algorithm where the task with the earliest deadline, is served
first [28]. The proposed LCO approach then considers the
set of all the possible actions L[t] and computes the util-
ity functions for the different offloading modes presented
in Section III considering different resource allocation �′ as
presented in Algorithm 2. The offloading mode � with com-
putation resource allocation �′ providing the maximum utility
function will be selected. If the maximum utility is negative,
there is no benefit of processing the data since the device will
be consuming more energy and monetary cost than benefiting
from processing the computation data; in this case, no pro-
cessing is recommended. Otherwise, the offloading mode � is
used with the determined resource allocation �′. The data in the
queue is then processed depending on the estimated allowed
data to be processed within time slot t. If the data of a task
is fully processed, the task is removed from the queue and
considered completed, otherwise some of its data is processed
and the remaining part stays in the queue to be processed in
the next time slots. If the task reaches its deadline and is not
yet fully processed, the task is dropped and removed from the
queue. The tasks sorted in the queue are handled consecutively
until the estimated allowed data to be processed within time
slot t is fully used or the queue becomes empty. The process
is repeated until all the tasks are considered.
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E. Complexity Analysis

The proposed Lyapunov-based approach is user-centric and
provides simple and fast solutions based on the current
observed queue state and resources availability without a-priori
knowledge of the application and the channel variations [27].
At every time slot, the queued tasks are sorted which can
be implemented using quick sort algorithm of complexity
O(nlogn). In general, the number of tasks n in the queue is very
small and the overhead can be considered negligible. Then,
m utility functions for the nine modes including local execu-
tion or remote execution at one MTR, MEC and MCC are
computed based on Algorithm 2. Every mode � has different
number of utility functions that can be computed based on the
resource allocation �′ using (21). We assume that the compu-
tation resources of the peer MT, MEC and MCC are divided
into H d , H e and H c equal-size chunks representing fractions
of their computation resources, respectively. Utilities will be
computed as presented in Algorithm 2 for the different modes
as follows: (1) one utility for local execution � = 1, (2) H d

utilities for D2D offloading � = 2 and � = 5, (3) H e utilities
for MEC offloading � = 3 and � = 6, (4) H c utilities for MCC
offloading � = 4 and � = 7, (5) H e utilities for � = 8, and
(6) H c utilities for � = 9. The worst case scenario is having all
the resources available at the different nodes; accordingly, the
total number of utilities will be 1+2H d +3H e +3H c . Every
utility function requires the estimation of (1) the maximum
data to be processed based on (2), (5), (8) and (11), (2) the
energy consumption based on (3), (6), (9) and (12), and (3) the
monetary cost based on (7), (10) and (13), for local execution,
D2D, MEC and MCC offloading, respectively. Hence, a total
of 4×(1+2H d +3H e+3H c) operations are needed to com-
plete Algorithm 2. Note that in our work, we assume the total
capacity of the MT and MEC resources are divided into ten
equal-sized chunks, where a chunk is the minimum resource
allocated in a time slot t representing 10% of their total capac-
ity F d and F e , respectively. Due to the high computation
capabilities of the MCC, its resources are divided into 100
chunks, where each represents 1% of the total MCC computa-
tion capacity while limiting the allocation per time slot to 20%.
Accordingly, H d , H e and H c will be equal to 10, 10, and 20,
respectively; maximum of 111 utility functions are computed
in that case. Accordingly, the maximization of the Lyapunov-
based utility function can be easily carried out by cycling over
all the possible actions and searching for the one providing the
best balance between the desired objectives [27], [29]. The
proposed approach then completes Algorithm 1 by selecting
the mode providing the highest utility function and updates
the system parameters such as queue size by removing the
data processed and adding newly generated tasks’ data, and
the status of every queued task by checking whether it was
completed within its deadline. Hence, our approach is of com-
plexity O(nlogn + m), however, the number of queued tasks
and utility functions is very small and the overhead can be
considered negligible.

The proposed approach is scalable since the offloading deci-
sion is made independently at the user end. It can accommo-
date for multi-users and multi-MTRs with multi-D2D, MEC

Algorithm 2 Lyapunov-Based Utility Functions Computation
for Different Offloading Strategies � ∈ L[t ] and Resource
Allocation �′
Output: Utility functions for the � ∈ L[t ] offloading
modes based on (21) with different computation resource
allocation �′
1: Compute the local computing utility function for � = 1:

• Estimate the maximum data to be processed ̂X [t ] within Ts

• Set the estimated data to be processed ̂D�[t ] =
̂X [t ]

• Estimate E�[t ] = E l [t ] and φ�[t ] = φl [t ]
2: Compute complete D2D offloading utility functions for � = 2:

• Consider different fractions of the MT computation resource μ̂d [t ].
Let �′ represents the computation resource allocated in terms of

equal-size chunks; i.e.,: �′ ∈ [1, 2, . . . , � μ̂
d [t]·Fd

Sc �]
• Compute the utility function for every possible �′:

- Estimate ̂Y ��′ [t ] within Ts

- Set ̂D��′ [t ] = ̂Y ��′ [t ]
- Estimate E��′ [t ] = Ed

��′ [t ] and φ��′ [t ] = φd
��′ [t ]

3: Compute complete MEC and MCC offloading utility functions for � = 3
and � = 4 similar to process 3.

4: Compute partial offloading including local execution and D2D offloading
� = 5, local execution and MEC offloading � = 6, and local execution
and MCC offloading � = 7 utility functions:

• Consider different computation resource allocation �′ at the nodes
(MT for � = 5, MEC for � = 6 or MCC for � = 7)

• Compute the utility function for every �′:
- Estimate the maximum data to be processed ̂D�′ [t ] at the

cooperating nodes within Ts, i.e.,: ̂D�′ [t ] = ̂Y ��′ [t ],
̂Z ��′ [t ] or ̂W��′ [t ] for � = 5, 6 or 7, respectively

- Set ̂D��′ [t ] = ̂X [t ] + ̂D�′ [t ]
- Estimate E��′ [t ] = E l [t ] + E�

�′ [t ]
and φ��′ [t ] = φl [t ] + φ�

�′ [t ]
5: Compute partial offloading including local execution, D2D and MEC

offloading utility function with � = 8
• Consider full utilization of the available computation resource μ̂d [t ]

at the MT
• Consider different fractions of computation resource �′ available at

the MEC less than μ̂e [t ]
• Compute the utility function for every possible �′:

- Estimate ̂X [t ] and ̂Y [t ] within Ts

- Estimate ̂Z ��′ [t ] for every �′ within Ts

- Set ̂D��′ [t ] = ̂X [t ] + ̂Y [t ] + ̂Z ��′ [t ]
- Estimate E��′ [t ] = E l [t ] + Ed [t ] + Ee

��′ [t ]
and φ��′ [t ] = φl [t ] + φd [t ] + φe

��′ [t ]
6: Compute partial offloading including local execution, D2D, MEC and

MCC offloading utility function with � = 9
• Consider full utilization of the available computation resource μ̂d [t ]

at the MT and μ̂e [t ] at the MEC
• Consider different fractions of computation resource �′ available at

the MCC less than μ̂c [t ]
• Compute the utility function for every �′:

- Estimate ̂X [t ], ̂Y [t ] and ̂Z [t ] within Ts

- Estimate ̂W��′ [t ]for every �′ within Ts

- Set ̂D��′ [t ] = ̂X [t ] + ̂Y [t ] + ̂Z [t ] + ̂W��′ [t ]
- Estimate E��′ [t ] = E l [t ] + Ed [t ] + Ee [t ] + Ec

��′ [t ] and

φ��′ [t ] = φl [t ] + φd [t ] + φe [t ] + φc
��′ [t ]

and MCC offloading. In the case of multi-MTRs scenario,
every user is responsible for their own decisions independently
based on their observed system parameters. If the system
is composed of N MTs, M MEC servers and a cloud, an
additional complexity load for computing N + M utilities is
needed to select the peer MT and MEC providing the best
performance for D2D and MEC offloading. The problem can
then be reduced to our initial problem with one MT, one
MEC and MCC regardless of the number of remote nodes
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in the network. Note that in real-life scenarios, for practical-
ity, feasibility and to achieve performance gains, the number
of interfaces used simultaneously by a mobile device may
be limited. Accordingly, the execution time is very low and
the solution might be reached within fractions of a msecond.
Numerical evaluation of the time complexity of the proposed
approach is presented in Section VI-C3.

V. TASK ADMISSION USING SUPPORT VECTOR MACHINES

Admitting all the tasks to the queue without considering
the congestion status of the queue results in spending energy
and monetary cost on processing data of tasks having high
potential to be dropped. Moreover, admitting these tasks leads
to a high queue size, which prevents other tasks with higher
potential to be completed within their deadline from being
served. Accordingly, to further enhance the performance of
the LCO approach, we propose integrating an SVM-based task
admission scheme to verify the availability of resources before
a generated task can be admitted to the requester queue. In
our work, we adopt Support Vector Machines for many rea-
sons including: (1) the SVM-based model admission control
scheme can be built offline only once, is generic for all the
data sizes, and can be used in real-time task admission control
while causing a negligible overhead as shown in our generated
results, (2) solving a supervised binary classification problem
where the classes are whether to admit a task or to drop it,
(3) supporting both linear and nonlinear data which in our
case are different input features and observations reflecting
task characteristic, as well as, the availability of resources and
queue congestion, (4) overcoming over-fitting and under-fitting
problems and has greater generalization ability since it follows
the Structural Risk Minimization principle, (5) effectiveness
in high dimensional spaces, (6) high accuracy and ability to
model complex decision boundaries, and (7) providing a com-
pact description of the learned model so that the output can
be easily predicted and classified based on the input features
and observations [30], [31]. Although the size of the training
set υ highly affects the performance of the SVM classifier
with O(υ3) time and O(υ2) memory training complexities,
the SVM is highly accurate and is able to model complex
linear and nonlinear decision boundaries.

Therefore, we used a two-class binary SVM to decide
whether to admit a task or drop it based on the following
features and observations reflecting the task characteristic, as
well as, the availability of resources and queue congestion:

(1) Di : is the size of computation data of task Ui

(2) Tmax
i : is the maximum delay tolerance for task Ui

(3) Q [t ]: is the queue size (in bits) at time slot t
(4) Q ′[t ]: is the size of the tasks in the queue at time slot t

with dynamic deadline less than T d
i [t ]

(5) Qu [t ]: is the number of tasks in the queue at time slot t
with dynamic deadline less than T d

i [t ]
(6) QT [t ]: is the average dynamic delay tolerance of the

queued tasks with dynamic deadline less than T d
i [t ]

(7) ̂Y [t ]̂Y [t ]̂Y [t ], (8) ̂Z [t ] and (9) ̂W [t ]: are the estimated allowed
data to be processed at the peer MT, MEC, and MCC,
respectively, within Ts

To build our SVM model, we generate our training data set by
extracting the features using our proposed LCO approach that
outperformed all other conventional approaches and proposed
system models in the literature as presented in our performance
evaluation in Section VI-C2. To keep our SVM model com-
plexity low, we consider different average data sizes λd ∈
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5} Mbits per task. For every value
of λd , we collected all the needed observations and tracked
every task to indicate its actual class whether it was completed
or dropped by the LCO approach. After extracting the features
and generating our training data set, we used binary SVM with
linear kernel and standardized the features using their corre-
sponding weighted means and standard deviations to make
them insensitive and invariant to the scales on which they are
measured. The SVM model is then integrated with the LCO
approach to form our proposed SVM-based task admission
with Lyapunov computation offloading (SVM-LCO) approach
presented in Figure 2. Accordingly, upon the arrival of a task,
the features are evaluated at the MTR end and fed to the SVM-
based task admission model, which decides whether to add
the task to the queue or drop it due to its low potential to be
completed within its deadline.

VI. PERFORMANCE RESULTS AND ANALYSIS

In this section, we present the performance evaluation, sim-
ulation setup, results and analysis to evaluate the proposed
approaches under different system parameters and models.

A. Performance Evaluation

To assess the performance of the proposed LCO and SVM-
LCO approaches, we generated results for the following
different strategies and system models from the literature:

1. Local Execution (LE): the task is allowed to be only
executed locally at the MTR without offloading.

2. Complete MCC (CC): the task data is allowed to be
offloaded only to the cloud.

3. Partial offloading- Local and D2D offloading (LD): the
task data is allowed to be partially executed locally and
remotely using D2D offloading to one peer MT (system
model adopted in [32])

4. Partial offloading- Local, D2D and MCC offloading
(LDM): the task is allowed to be partially executed
locally and remotely using D2D offloading to one peer
MT and MCC offloading, simultaneously (system model
adopted in [8] and [9]).

5. Partial offloading- Local, D2D and MEC offloading
mode selection (MS5): the task is allowed to be par-
tially executed based on 5 modes: (1) local execution,
(2) complete D2D offloading, (3) partial D2D offloading
with local execution, (4) complete MEC offloading, and
(5) partial MEC offloading with local execution (system
model adopted in [7]).

6. Partial offloading- Local, D2D, MEC and MCC offload-
ing mode selection (MS7): we customized the mode
selection approach (MS5) adopted in [7] to consider
MCC offloading. Accordingly, MS7 considers 7 modes:
offloading modes(1)-(5) presented in MS5 and two
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additional modes: (6) complete MCC offloading, and
(7) partial MCC offloading with local execution.

B. Simulation Setup

1) General Parameters: Our proposed approach is dynamic
and performs on a time slot basis of duration Ts. In our work,
we assume Ts to be 0.1 second, representing the smallest unit
of time. In addition, we aimed in our objective function at
equally minimizing energy consumption and monetary cost,
hence, setting β to 0.5. A study on the weight of the cost
function V is presented in Section VI-C1.

2) Computation Demands: We assume that the number of
tasks requested per second and the task data size follow the
Poisson distributions with average rates of λN and λd, respec-
tively [23]. We set λN to 6 tasks/s and the computation require-
ment F of the tasks is set to 1000 CPU cycles/bit [9], [33].
We also target different data partitioned oriented applica-
tions with different computation intensity in terms of CPU
cycles/bit such as Gzip compression application requiring 40
cycles/bit [25] and more computation-intensive applications
such as multimedia services and video stream analysis requir-
ing 737.5 cycles/bit [23]. Accordingly, we adopt different
application profiles with different intensity F of 40, 500, 700
and 1000 CPU cycles/bit. The inter-arrival time between tasks
follows the exponential distribution with average λT0 [33].
The maximum delay tolerance of the tasks were randomly
selected from a uniform distribution, U(0.1, 1). Our simula-
tions consider results for 10 minutes of tasks generation which
corresponds to processing 3517 tasks with λN = 6 tasks/s
and different data sizes over an average of 6000 times
slots.

3) Computation Resources: The local computation capac-
ity of a requester MTR F l and peer MTs F d is assumed to
be 2 GHz. The effective switched capacitance of a mobile
terminal is assumed to be Cl = Cd = 2 × 10−26 reflect-
ing the energy consumption coefficient related to the MT
CPU performance [16]. The computation capacity of the MEC
server F e and cloud F c are assumed to be 10 GHz and 1 THz,
respectively [20]. We assume the MT and MEC resources are
divided into ten equal-sized chunks, where a chunk is the min-
imum resource allocated in a time slot t representing 10% of
their total capacity F d and F e , respectively. Due to the high
computation capabilities of the MCC, its resources are divided
into 100 chunks, where each represents 1% of the total MCC
computation capacity. We limit the MCC resource allocated
per time slot to 20%. We assume the available fractions of
computation resources of the MT, MEC and MCC values are
randomly selected between 0.1 and 1. The computation cost of
the cooperating nodes may vary based on the service provider
and its computation capacity. For instance, Hyve offers cloud
services of 1 GB RAM and 4×3.0 GHz CPUs instance for
170 USD per month [34]. We assume the MTR pays 2 and
20 USD/month for 2 GHz and 10 GHz for a peer MT and MEC
services, respectively. Accordingly, the cost of the D2D, MEC
and cloud processing will be φdc = 0.3858×10−7 USD/GHz
per time slot, φec = 0.7716×10−7 USD/GHz per time slot and
φcc = 0.5466× 10−6 USD/GHz per time slot, respectively.

Fig. 3. Average queue size in kbits variation with respect to V for different
data size λd .

Fig. 4. Percentage of completed tasks variation with respect to V for different
data size λd .

4) Communication Parameters: We assume the MTR com-
municates with the peer MT over Bluetooth, with the MEC
over WiFi and the MCC over cellular links. The average
transmission rates Rd , Re and Rc are set to 4, 4, and
8 Mbps, with an average variation of 0.5 Mbps. We assume
the power Pdt , Pet and Pct consumed by the MTR to trans-
mit over Bluetooth, WiFi and cellular networks to be 0.5, 0.5,
and 0.6 Watts, and the receive power Pdr over Bluetooth to
be 0.2 Watts [35]. We assume the transmission cost to be free
over Bluetooth, 2.5685× 10−10 and 1.3699× 10−9 USD/bit
over WiFi and cellular networks, respectively [36].

C. Simulations Results and Analysis

In this section, we first study the impact of the weight V
and then evaluate the proposed approaches and compare
the performance of the various strategies mentioned in
Section VI-A under different computation demands and system
load.

1) Study on the Weight V of the Energy Consumption and
Monetary Cost: To study the tradeoffs between queue stabil-
ity, energy consumption and monetary cost, we evaluate the
performance of our proposed LCO approach for different val-
ues of V varying between 0 and 107. The values of V were
chosen to reflect the significance of the normalized cost func-
tion C��′ [t ] in terms of energy consumption and monetary cost
while considering the expected amount of computation data to
be processed E{D��′ [t ]|S [t ]} (kbits) weighted by the observed
queue size Q[t] (kbits). Figures 3, 4 and 5 evaluate the average
queue size, the percentage of completed tasks, the energy con-
sumption and monetary cost per completed task, respectively,
with different average task data size λd of 2, 3 and 4 Mbits. In
Figure 6, we evaluate the percentage of effective computation
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Fig. 5. Energy consumption and monetary cost per completed task variation
with respect to V for different data size λd .

Fig. 6. Percentage of effective data processed variation with respect to V
for different data size λd .

data processed which represents the amount of computation
data processed belonging only to tasks that are completed. In
general, processed data can belong to tasks that can be either
completed within their deadline or dropped. We consider the
data processed of tasks ending up to be dropped as overhead
while we aim to have more efficient processing of data of
tasks with high potential to be completed. The results show
that increasing V has high impact on decreasing the number
of completed tasks while having low impact on reducing the
energy consumption and monetary cost. This is due to the
fact that the proposed approach tends to defer the offload-
ing while considering higher values of V to save energy and
cost which leads to a more congested queue and less per-
centage of completed tasks as presented in Figures 3 and 4.
Consequently, the MTR will spend more monetary cost and
energy to process data of tasks that will be eventually dropped
and not counted towards the goal of maximizing the number
of completed tasks, which decreases the efficiency of the data
processed as shown in Figure 6 and causes an overhead in
terms of energy consumption and monetary cost. This will
also prevent more tasks to be completed within their dead-
line which decreases the number of completed tasks with the
increase of V as presented in Figure 4, without achieving gains
in terms of energy and monetary cost as presented in Figure 5
due to processing data of tasks ending up being dropped.

2) Performance Evaluation of the SVM-LCO Approach:
In this section, we compare the performance of the proposed
approaches with the different strategies and system mod-
els adopted in the state-of-the-art literature as presented
in Section VI-A. We evaluate the average queue size, the
percentage of completed tasks, the percentage of effective
computation data processed, the energy consumption and mon-
etary cost per completed task in Figures 7, 8, 9, 10 and 11,

Fig. 7. Average queue size in kbits variation with respect to the average data
size λd .

Fig. 8. Percentage of completed tasks variation with respect to the average
data size λd .

Fig. 9. Percentage of effective data processed variation with respect to V
for different data size λd .

Fig. 10. Energy consumption per completed task variation with respect to
the average data size λd .

and respectively, while varying the average data size λd
from 10 kbits to 5 Mbits. Based on the observed values
in Section VI-C1, we adopt the weight V = 105 to cap-
ture the tradeoff between the considered performance metrics.
Moreover, we further illustrate the performance enhancement
provided by the SVM-LCO approach compared to the LCO
approach in Figure 12 where we evaluate the percentage of
completed and dropped tasks. We differentiate between two
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Fig. 11. Monetary cost per completed task variation with respect to the
average data size λd .

Fig. 12. Percentages of completed tasks and dropped tasks variation with
respect to the average data size λd .

types of dropped tasks: Γ1 the number of tasks admitted
to the queue, however, they were dropped due to the lack
of resources, and Γ2 the number of tasks dropped by the
SVM-based admission control.

The results show that complete local execution (LE) without
using any computation task offloading is cost efficient, how-
ever, due to the limitation of the computation capabilities of
the requester, the tasks with large data sizes may not be com-
pleted locally within their deadline. This drops the percentage
of completed tasks from 100% to 0% when the average data
size exceeds 2 Mbits and leads to a high energy consumption
per task since the MTR keeps on processing tasks that will
be eventually dropped. Complete MCC offloading (CC) was
able to provide higher performance in terms of queue size and
number of completed tasks due the high computation capacity
of the cloud. However, the MTR will be using the cellular
network to offload all its tasks’ data to the cloud which is
expensive in terms of energy consumption and monetary cost.

Using partial offloading and considering local execution
with D2D offloading to a peer MT (LD) provided a higher
number of completed tasks compared to local execution with
higher monetary cost. The mode selection approaches (MS5
and MS7) while partitioning the data into maximum two parts,
locally or remotely executed using D2D or MEC offloading
provided higher number of completed tasks compared to LD
while consuming more energy and monetary cost. Adding two
modes to MS5 including complete and partial MCC offload-
ing, allowed MS7 to provide higher number of completed tasks
compared to MS5 and CC. Note that the energy consump-
tion is higher when the D2D offloading is considered since
we consider in our formulation the energy consumed by the
MTR for transmission and by the peer MT for receiving and

Fig. 13. Average computation data size executed locally or remotely using
D2D, MEC and MCC offloading with respect to the average data size λd .

processing the computation data. Therefore, considering par-
titioning the task data into three parts to be executed locally
and remotely at a peer MT and MCC, simultaneously, pro-
vided higher number of completed tasks and queue size with
lower energy consumption and monetary cost per completed
task.

Our proposed LCO approach adopts all the offloading
modes previously presented in addition to the use of local
execution, D2D, MEC and MCC offloading, simultaneously.
The results show that the LCO outperforms all other conven-
tional and proposed system models in the literature in terms of
average queue size and percentage of completed tasks while
reducing energy consumption and monetary cost. Even with
very large data size of 5 Mbits, LCO was able to complete
21% tasks while consuming 0.8256 Joules and 0.0091 USD
per completed task. Compared to LDM, LCO provides 10.66%
more completed tasks, with a reduction of 58% and 93% in
terms of energy consumption and monetary cost, respectively.
Hence, our approach was able to smartly decide on the offload-
ing modes that will efficiently use the computation resources
and achieve performance gains. For instance, as presented
in Figure 13, local execution was used without any compu-
tation offloading when the average task data size was low
(e.g.,: λd = 100 kbits/task). However, when λd increases
to 200 kbits/task, the computation demands become higher
than the local device capabilities which requires simultaneous
remote execution at a peer MT. Larger data sizes required the
intervention of the edge server and cloud to be completed due
to the limited computation capabilities of the MTs.

The SVM-based task admission was able to provide major
enhancement in the performance of the proposed LCO
approach. The proposed SVM-LCO increased the percentage
of completed tasks from 21% to 31% with a high average
data size of 5 Mbits as presented in Figures 8 and 12. A large
number of tasks was dropped by the SVM-based task admis-
sion approach which reduces the queue size and increases the
effective data processed. The number of dropped tasks by the
proposed admission control scheme increases with the increase
of the computation data size to provide higher efficiency for
higher congested queues. Moreover, less than 12% of the tasks
were admitted to the queue, and ended up being dropped,
which increases the effective data processed and allows the
MTR queue to accommodate for more tasks. The effective
data processed was increased by 43.9% while maintaining a
low average queue size with high average data size of 5 Mbits.
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Fig. 14. Average queue size in kbits variation with respect to the average
data size λd , number of tasks per second λN , computation intensity F, and
number of nodes.

Fig. 15. Percentage of completed tasks variation with respect to the average
data size λd , number of tasks per second λN , computation intensity F, and
number of nodes.

Fig. 16. Energy consumption per completed task variation with respect to the
average data size λd , number of tasks per second λN , computation intensity
F, and number of nodes.

This reduces the energy consumption and monetary cost per
task by more than 82% and 85%, respectively.

3) Performance Evaluation Considering Different System
Parameters: We evaluate the performance of the SVM-LCO
approach while varying the computation demands in terms of
the average number of tasks/s λN , the task data size λd , and
the computation intensity F, as well as, the load on multiple
remote nodes in Figures 14, 15, 16, 17 and 18. We adopt
three different load conditions on the remote nodes reflected
by the availability of their computation resources as follows:
(1) high resource availability (HRA) assuming the peer MT,
edge server and cloud resources are fully available (i.e.,: μ̂d =
μ̂e = μ̂c = 100%), (2) medium resource availability (MRA)
assuming μ̂d = μ̂e = 50%, and μ̂c = 10%, and (3) low
resource availability (LRA) assuming μ̂d = μ̂e = 20%, and
μ̂c = 5% due to a highly congested network. We assume

Fig. 17. Monetary cost per completed task variation with respect to the
average data size λd , number of tasks per second λN , computation intensity
F, and number of nodes.

Fig. 18. Execution time per time slot with respect to the average data size
λd , number of tasks per second λN , and number of nodes.

the task deadline is 1 s. We also target different data parti-
tioned oriented application profiles with different computation
intensity F of 40, 500, 700 and 1000 CPU cycles/bit.

The results show that for the same computation demands,
as the load on the remote nodes increases and their resource
availability decreases, the average queue size increases while
decreasing the number of completed tasks and increasing the
energy consumption and monetary cost. Increasing the number
of tasks λN from 6 to 10 tasks per second increases the load
on the system leading to a higher average queue size, a lower
percentage of completed tasks with higher energy consump-
tion and monetary cost. Decreasing the computation intensity
demands F reduced the average queue size, the energy con-
sumption and monetary cost and increased the percentage of
completed tasks. For low computation demands of 40 CPU
cycles/bit, the MTR was able to rely mainly on its local com-
putation resources which leads to an empty queue and the
completion of the tasks with minimum energy and monetary
cost. Moreover, we have evaluated the performance of our
proposed approach while considering the existence of N = 20
peer MTs, M = 5 edge servers and the cloud with high
resource availability (HRA-NM). The existence of multiple
cooperating nodes willing to assist the MTR in the com-
putation processing provides slightly higher performance in
terms of percentage of completed tasks with lower monetary
cost, energy consumption and average queue size. This is due
to the fact that at every time slot, the MTR will select the
peer MT and the edge server providing the highest general
utility function before proceeding with the D2D and MEC
offloading.

To complement the theoretical complexity analysis
presented in Section IV-E, we evaluate the average execution
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time per time slot in Figure 18 which increased from
1.4514× 10−4 to 2.6677× 10−4 s (on a 2.4 GHz Quad-Core
Intel Core i5) when the number of peer MTs N increased from
1 to 20, and the number of edge servers M from 1 to 5 using
the LCO approach. Similarly, it increases from 6.1647×10−4

to 7.9030 × 10−4 s using the SVM-LCO approach. When
λN increases from 6 to 10 tasks per second, the execution
time increases to 1.7543 × 10−4 and 7.9867 × 10−4 s for
LCO and SVM-LCO, respectively. This is due to the fact
that generating on average 10 tasks per second forces the
proposed approach to process a much larger number of tasks
and almost at every time slot, a new task is generated, and the
proposed approach will predict using the SVM model whether
the task should be admitted. Therefore, the simulation results
showed that our proposed approaches can provide real-time
offloading decisions in less than 0.8% of the time slot
duration Ts = 0.1 s.

D. Simulations Results Outcome

The proposed approaches provide user-centric real-time
computation offloading and resource allocation decisions aim-
ing at stabilizing requester queue while minimizing the energy
and monetary cost without causing additional overhead on
the system. Adopting different offloading modes including
local execution, partial and complete D2D, MEC and MCC
offloading, simultaneously, allowed the LCO to outperform
other existing system models presented in the literature.
Moreover, integrating the SVM-based task admission into
the LCO approach had high impact on the stability of the
MTR queue and the effective data processed, and hence,
reduced further the energy and monetary cost even with
high computation data demands. The proposed approaches
showed high efficiency under different computation demands
and network load while using low-latency data partitioned ori-
ented computation-intensive applications with very low time
complexity.

VII. CONCLUSION

This paper provided real-time solutions for task admis-
sion, computation offloading and resource allocation aiming
at stabilizing the requester queue, maximizing the number of
completed tasks while minimizing energy consumption and
monetary cost in D2D-enabled heterogeneous MEC network.
The solution is based on a Lyapunov drift-plus-penalty for-
mulation while adopting partial offloading where a requester
offloads different parts of its computation task data simulta-
neously to a peer mobile terminal, mobile edge server and
cloud. The admission control was based on support vector
machines to evaluate the availability of resources and queue
congestion and decide to admit or reject a task. The proposed
approaches were evaluated under different system models
presented in the literature, computation demands and network
loads. The results show that the using SVM-based task admis-
sion control provided major enhancement to our proposed
Lyapunov-based computation offloading approach over con-
ventional approach and existing system models presented in
the literature. As future work, the proposed approaches can

be extended to consider communication resource allocation,
dynamic weights for the penalty function and accommo-
date for different applications with heterogeneous computation
demands.
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